Effect of an acute increase in central blood volume on cerebral hemodynamics

Author:

Ogoh Shigehiko1,Hirasawa Ai1,Raven Peter B.2,Rebuffat Thomas3,Denise Pierre3,Lericollais Romain3,Sugawara Jun4,Normand Hervé3

Affiliation:

1. Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan;

2. Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas;

3. Physiology Department, Faculty of Medicine, Normandie University, France and Institut National de la Santé et de la Recherche Mèdical, Paris, France; Centre Hospitalier Universitaire, Caen, France; and

4. Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan

Abstract

Systemic blood distribution is an important factor involved in regulating cerebral blood flow (CBF). However, the effect of an acute change in central blood volume (CBV) on CBF regulation remains unclear. To address our question, we sought to examine the CBF and systemic hemodynamic responses to microgravity during parabolic flight. Twelve healthy subjects were seated upright and exposed to microgravity during parabolic flight. During the brief periods of microgravity, mean arterial pressure was decreased (−26 ± 1%, P < 0.001), despite an increase in cardiac output (+21 ± 6%, P < 0.001). During microgravity, central arterial pulse pressure and estimated carotid sinus pressure increased rapidly. In addition, this increase in central arterial pulse pressure was associated with an arterial baroreflex-mediated decrease in heart rate ( r = −0.888, P < 0.0001) and an increase in total vascular conductance ( r = 0.711, P < 0.001). The middle cerebral artery mean blood velocity (MCA Vmean) remained unchanged throughout parabolic flight ( P = 0.30). During microgravity the contribution of cardiac output to MCA Vmean was gradually reduced ( P < 0.05), and its contribution was negatively correlated with an increase in total vascular conductance ( r = −0.683, P < 0.0001). These findings suggest that the acute loading of the arterial and cardiopulmonary baroreceptors by increases in CBV during microgravity results in acute and marked systemic vasodilation. Furthermore, we conclude that this marked systemic vasodilation decreases the contribution of cardiac output to CBF. These findings suggest that the arterial and cardiopulmonary baroreflex-mediated peripheral vasodilation along with dynamic cerebral autoregulation counteracts a cerebral overperfusion, which otherwise would occur during acute increases in CBV.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3