Affiliation:
1. University of Ottawa, Department of Physiology, Ontario, Canada.
Abstract
The goal of this study was to determine whether in the dog ATP-sensitive K+ channels blocked with glibenclamide affect diaphragmatic blood flow [phrenic arterial blood flow (Qpa)] during both spontaneous breathing at rest and increased diaphragmatic activity. A control group (no glibenclamide; n = 4) and an experimental group (50 mg/kg of glibenclamide; n = 5) were studied. During spontaneous breathing at rest, Qpa was 15.0 ml.min-1 x 100 g-1 and decreased by 5% in the presence of glibenclamide. Diaphragmatic pacing (30 min-1) generated by phrenic nerve pacing produced an initial diaphragmatic tension-time index of 0.25 in both groups. A 50% decay in transdiaphragmatic pressure was reached at 165 s in the experimental group compared with 421 s in the control group. Diaphragmatic pacing increased Qpa by 46% in the experimental group and 65% in the control group, yielding a 63% greater vascular resistance in the experimental group. Phrenic vein K+ content at rest was unchanged by the presence of glibenclamide, being 3.6 +/- 0.16 mmol/l compared with 3.5 +/- 0.19 mmol/l in the control group. Phrenic nerve pacing in the control group produced a 13% increase in phrenic vein K+ content, whereas in the experimental group a 16% decrease was observed. We suggest that ATP-sensitive K+ channels play an important role in the modulation of Qpa.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献