Acute inhibition of ATP-sensitive K+ channels impairs skeletal muscle vascular control in rats during treadmill exercise

Author:

Holdsworth Clark T.1,Copp Steven W.1,Ferguson Scott K.1,Sims Gabrielle E.2,Poole David C.12,Musch Timothy I.12

Affiliation:

1. Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; and

2. Department of Kinesiology, Kansas State University, Manhattan, Kansas

Abstract

The ATP-sensitive K+ (KATP) channel is part of a class of inward rectifier K+ channels that can link local O2 availability to vasomotor tone across exercise-induced metabolic transients. The present investigation tested the hypothesis that if KATP channels are crucial to exercise hyperemia, then inhibition via glibenclamide (GLI) would lower hindlimb skeletal muscle blood flow (BF) and vascular conductance during treadmill exercise. In 27 adult male Sprague-Dawley rats, mean arterial pressure, blood lactate concentration, and hindlimb muscle BF (radiolabeled microspheres) were determined at rest ( n = 6) and during exercise ( n = 6–8, 20, 40, and 60 m/min, 5% incline, i.e., ∼60–100% maximal O2 uptake) under control and GLI conditions (5 mg/kg intra-arterial). At rest and during exercise, mean arterial pressure was higher (rest: 17 ± 3%, 20 m/min: 5 ± 1%, 40 m/min: 5 ± 2%, and 60 m/min: 5 ± 1%, P < 0.05) with GLI. Hindlimb muscle BF (20 m/min: 16 ± 7%, 40 m/min: 30 ± 9%, and 60 m/min: 20 ± 8%) and vascular conductance (20 m/min: 20 ± 7%, 40 m/min: 33 ± 8%, and 60 m/min: 24 ± 8%) were lower with GLI during exercise at 20, 40, and 60 m/min, respectively ( P < 0.05 for all) but not at rest. Within locomotory muscles, there was a greater fractional reduction present in muscles comprised predominantly of type I and type IIa fibers at all exercise speeds ( P < 0.05). Additionally, blood lactate concentration was 106 ± 29% and 44 ± 15% higher during exercise with GLI at 20 and 40 m/min, respectively ( P < 0.05). That KATP channel inhibition reduces hindlimb muscle BF during exercise in rats supports the obligatory contribution of KATP channels in large muscle mass exercise-induced hyperemia.

Funder

American Heart Association

National Institutes of Health

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3