Treadmill running causes significant fiber damage in skeletal muscle of KATP channel-deficient mice

Author:

Thabet M.1,Miki T.2,Seino S.2,Renaud J.-M.1

Affiliation:

1. Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada

2. Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan

Abstract

Although it has been suggested that the ATP-sensitive K+ (KATP) channel protects muscle against function impairment, most studies have so far given little evidence for significant perturbation in the integrity and function of skeletal muscle fibers from inactive mice that lack KATP channel activity in their cell membrane. The objective was, therefore, to test the hypothesis that KATP channel-deficient skeletal muscle fibers become damaged when mice are subjected to stress. Wild-type and KATP channel-deficient mice (Kir6.2−/− mice) were subjected to 4–5 wk of treadmill running at either 20 m/min with 0° inclination or at 24 m/min with 20° uphill inclination. Muscles of all wild-type mice and of nonexercised Kir6.2−/− mice had very few fibers with internal nuclei. After 4–5 wk of treadmill running, there was little evidence for connective tissues and mononucleated cells in Kir6.2−/− hindlimb muscles, whereas the number of fibers with internal nuclei, which appear when damaged fibers are regenerated by satellite cells, was significantly higher in Kir6.2−/− than wild-type mice. Between 5% and 25% of the total number of fibers in Kir6.2−/− extensor digitum longus, plantaris, and tibialis muscles had internal nuclei, and most of such fibers were type IIB fibers. Contrary to hindlimb muscles, diaphragms of Kir6.2−/− mice that had run at 24 m/min had few fibers with internal nuclei, but mild to severe fiber damage was observed. In conclusion, the study provides for the first time evidence 1) that the KATP channels of skeletal muscle are essential to prevent fiber damage, and thus muscle dysfunction; and 2) that the extent of fiber damage is greater and the capacity of fiber regeneration is less in Kir6.2−/− diaphragm muscles compared with hindlimb muscles.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3