Early stages of sensorimotor map acquisition: learning with free exploration, without active movement or global structure

Author:

van Vugt F. T.12ORCID,Ostry D. J.12

Affiliation:

1. Psychology Department, McGill University, Montreal, Canada

2. Haskins Laboratories, New Haven, Connecticut

Abstract

One of the puzzles of learning to talk or play a musical instrument is how we learn which movement produces a particular sound: an audiomotor map. The initial stages of map acquisition can be studied by having participants learn arm movements to auditory targets. The key question is what mechanism drives this early learning. Three learning processes from previous literature were tested: map learning may rely on active motor outflow (target), on error correction, and on the correspondence between sensory and motor distances (i.e., that similar movements map to similar sounds). Alternatively, we hypothesized that map learning can proceed without these. Participants made movements that were mapped to sounds in a number of different conditions that each precluded one of the potential learning processes. We tested whether map learning relies on assumptions about topological continuity by exposing participants to a permuted map that did not preserve distances in auditory and motor space. Further groups were tested who passively experienced the targets, kinematic trajectories produced by a robot arm, and auditory feedback as a yoked active participant (hence without active motor outflow). Another group made movements without receiving targets (thus without experiencing errors). In each case we observed substantial learning, therefore none of the three hypothesized processes is required for learning. Instead early map acquisition can occur with free exploration without target error correction, is based on sensory-to-sensory correspondences, and possible even for discontinuous maps. The findings are consistent with the idea that early sensorimotor map formation can involve instance-specific learning.NEW & NOTEWORTHY This study tested learning of novel sensorimotor maps in a variety of unusual circumstances, including learning a mapping that was permuted in such as way that it fragmented the sensorimotor workspace into discontinuous parts, thus not preserving sensory and motor topology. Participants could learn this mapping, and they could learn without motor outflow or targets. These results point to a robust learning mechanism building on individual instances, inspired from machine learning literature.

Funder

HHS | NIH | National Institute of Child Health and Human Development

Fonds de Recherche du Québec Nature et Technologies

Vanier-Banting Postdoctoral Fellowship

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3