A Framework for Optimizing Co-adaptation in Body-Machine Interfaces

Author:

De Santis Dalia

Abstract

The operation of a human-machine interface is increasingly often referred to as a two-learners problem, where both the human and the interface independently adapt their behavior based on shared information to improve joint performance over a specific task. Drawing inspiration from the field of body-machine interfaces, we take a different perspective and propose a framework for studying co-adaptation in scenarios where the evolution of the interface is dependent on the users' behavior and that do not require task goals to be explicitly defined. Our mathematical description of co-adaptation is built upon the assumption that the interface and the user agents co-adapt toward maximizing the interaction efficiency rather than optimizing task performance. This work describes a mathematical framework for body-machine interfaces where a naïve user interacts with an adaptive interface. The interface, modeled as a linear map from a space with high dimension (the user input) to a lower dimensional feedback, acts as an adaptive “tool” whose goal is to minimize transmission loss following an unsupervised learning procedure and has no knowledge of the task being performed by the user. The user is modeled as a non-stationary multivariate Gaussian generative process that produces a sequence of actions that is either statistically independent or correlated. Dependent data is used to model the output of an action selection module concerned with achieving some unknown goal dictated by the task. The framework assumes that in parallel to this explicit objective, the user is implicitly learning a suitable but not necessarily optimal way to interact with the interface. Implicit learning is modeled as use-dependent learning modulated by a reward-based mechanism acting on the generative distribution. Through simulation, the work quantifies how the system evolves as a function of the learning time scales when a user learns to operate a static vs. an adaptive interface. We show that this novel framework can be directly exploited to readily simulate a variety of interaction scenarios, to facilitate the exploration of the parameters that lead to optimal learning dynamics of the joint system, and to provide an empirical proof for the superiority of human-machine co-adaptation over user adaptation.

Funder

H2020 Marie Sklodowska-Curie Actions

National Institute on Disability, Independent Living, and Rehabilitation Research

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3