Predicting and Shaping Human-Machine Interactions in Closed-loop, Co-adaptive Neural Interfaces

Author:

Madduri Maneeshika M.ORCID,Yamagami MomonaORCID,Li Si Jia,Burckhardt Sasha,Burden Samuel A.ORCID,Orsborn Amy L.ORCID

Abstract

AbstractNeural interfaces can restore or augment human sensorimotor capabilities by converting high-bandwidth biological signals into control signals for an external device via a decoder algorithm. Leveraging user and decoder adaptation to create co-adaptive interfaces presents opportunities to improve usability and personalize devices. However, we lack principled methods to model and optimize the complex two-learner dynamics that arise in co-adaptive interfaces. Here, we present new computational methods based on control theory and game theory to analyze and generate predictions for user-decoder co-adaptive outcomes in continuous interactions. We tested these computational methods using an experimental platform where human participants (N=14) learn to control a cursor using an adaptive myoelectric interface to track a target on a computer display. Our framework predicted the outcome of co-adaptive interface interactions and revealed how interface properties can shape user behavior. These findings contribute new tools to design personalized, closed-loop, co-adaptive neural interfaces.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3