Validation of a non-invasive, real-time, human-in-the-loop model of intracortical brain-computer interfaces

Author:

Awasthi Peeyush,Lin Tzu-Hsiang,Bae Jihye,Miller Lee EORCID,Danziger Zachary CORCID

Abstract

Abstract Objective. Despite the tremendous promise of invasive brain-computer interfaces (iBCIs), the associated study costs, risks, and ethical considerations limit the opportunity to develop and test the algorithms that decode neural activity into a user’s intentions. Our goal was to address this challenge by designing an iBCI model capable of testing many human subjects in closed-loop. Approach. We developed an iBCI model that uses artificial neural networks (ANNs) to translate human finger movements into realistic motor cortex firing patterns, which can then be decoded in real time. We call the model the joint angle BCI, or jaBCI. jaBCI allows readily recruited, healthy subjects to perform closed-loop iBCI tasks using any neural decoder, preserving subjects’ control-relevant short-latency error correction and learning dynamics. Main results. We validated jaBCI offline through emulated neuron firing statistics, confirming that emulated neural signals have firing rates, low-dimensional PCA geometry, and rotational jPCA dynamics that are quite similar to the actual neurons (recorded in monkey M1) on which we trained the ANN. We also tested jaBCI in closed-loop experiments, our single study examining roughly as many subjects as have been tested world-wide with iBCIs (n = 25). Performance was consistent with that of the paralyzed, human iBCI users with implanted intracortical electrodes. jaBCI allowed us to imitate the experimental protocols (e.g. the same velocity Kalman filter decoder and center-out task) and compute the same seven behavioral measures used in three critical studies. Significance. These encouraging results suggest the jaBCI’s real-time firing rate emulation is a useful means to provide statistically robust sample sizes for rapid prototyping and optimization of decoding algorithms, the study of bi-directional learning in iBCIs, and improving iBCI control.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3