Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S

Author:

Stewart Andrew K.12,Shmukler Boris E.12,Vandorpe David H.12,Rivera Alicia34,Heneghan John F.12,Li Xiaojin5,Hsu Ann1,Karpatkin Margaret6,O'Neill Allison F.782,Bauer Daniel E.79,Heeney Matthew M.79,John Kathryn7,Kuypers Frans A.10,Gallagher Patrick G.11,Lux Samuel E.789,Brugnara Carlo34,Westhoff Connie M.12513,Alper Seth L.12

Affiliation:

1. Renal and Molecular and Vascular Medicine Divisions, Beth Israel Deaconess Medical Center, Boston, Massachusetts;

2. Departments of 5Medicine,

3. Department of Laboratory Medicine and

4. Pathology, Harvard Medical School, Boston, Massachusetts;

5. Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and

6. Department of Pediatrics, New York University School of Medicine, New York, New York;

7. Division of Hematology/Oncology, Children's Hospital Boston, Boston, Massachusetts;

8. Department of Pediatric Oncology, Dana-Farber Cancer Center, Boston, Massachusetts;

9. Pediatrics, and

10. Children's Hospital Oakland Research Institute, Oakland, California;

11. Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut;

12. American Red Cross and

13. New York Blood Center, New York, New York

Abstract

Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li+and86Rb+, with secondarily increased86Rb+influx sensitive to ouabain and to bumetanide. Increased RhAG-associated14C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of Li+,86Rb+, and14C-MA were pharmacologically distinct, and Li+uptakes associated with RhAG and RhAG F65S were differentially inhibited by NH4+and Gd3+. RhAG-expressing oocytes were acidified and depolarized by 5 mM bath NH3/NH4+, but alkalinized and depolarized by subsequent bath exposure to 5 mM methylammonium chloride (MA/MA+). RhAG F65S-expressing oocytes exhibited near-wild-type responses to NH4Cl, but MA/MA+elicited attenuated alkalinization and strong hyperpolarization. Expression of RhAG or RhAG F65S increased steady-state cation currents unaltered by bath Li+substitution or bath addition of 5 mM NH4Cl or MA/MA+. These oocyte studies suggest that 1) RhAG expression increases oocyte transport of NH3/NH4+and MA/MA+; 2) RhAG F65S exhibits gain-of-function phenotypes of increased cation conductance/permeability, and loss-of-function phenotypes of decreased and modified MA/MA+transport, and decreased NH3/NH4+-associated depolarization; and 3) RhAG transports NH3/NH4+and MA/MA+by distinct mechanisms, and/or the substrates elicit distinct cellular responses. Thus, RhAG F65S is a loss-of-function mutation for amine transport. The altered oocyte intracellular pH, membrane potential, and currents associated with RhAG or RhAG F65S expression may reflect distinct transport mechanisms.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3