Inhibition of phosphate transport by NAD+/NADH in brush border membrane vesicles

Author:

Lucea Susana1,Guillén Natalia1,Sosa Cecilia1,Sorribas Víctor1ORCID

Affiliation:

1. Group of Molecular Toxicology, Department of Biochemistry and Molecular and Cell Biology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain

Abstract

Nicotinamide is an important regulator of Pi homeostasis after conversion into NAD+/NADH. In this work, we have studied the classical inhibition of Pi transport by these compounds in the brush border membrane vesicles (BBMV) of rat kidney and rat intestine, and we examined the effects in opossum kidney (OK) cells and in phosphate transporter-expressing Xenopus laevis oocytes. In BBMV, NAD+ required preincubation at either room temperature or on ice to inhibit Pi uptake in BBMV. However, no effects were observed in the known Slc34 or Slc20 Pi transporters expressed in Xenopus oocytes, in OK cells, or in isolated rat cortical nephron segments. In BBMV from jejunum or kidney cortex, the inhibition of Pi transport was specific, dose-related, and followed a competitive inhibition pattern, as shown by linear transformation and nonlinear regression analyses. A Ki value of 538 µM NAD+ in kidney BBMV was obtained. Ribosylation inhibitors and ribosylation assays revealed no evidence that this reaction was responsible for inhibiting Pi transport. An analysis of the persistence of NAD+/NADH revealed a half-life of just 2 min during preincubation. Out of several metabolites of NAD degradation, only ADP-ribose was able to inhibit Pi uptake. Pi concentration also increased during 30 min of preincubation, up to 0.67 mM, most likely as a metabolic end product. In conclusion, the classical inhibition of Pi transport by NAD+/NADH in BBMV seems to be caused by the degradation metabolites of these compounds during the preincubation time.

Funder

Government of Aragon | Departamento de Educación, Cultura y Deporte, Gobierno de Aragón

Ministerio de Ciencia, Innovación y Universidades

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3