Mechanistic characterization of waterborne selenite uptake in the water flea, Daphnia magna, indicates water chemistry affects toxicity in coal mine-impacted waters

Author:

Klaczek Chantelle E1ORCID,Goss Greg G1,Glover Chris N12

Affiliation:

1. University of Alberta Department of Biological Sciences, CW 405 Biological Sciences Bldg., , Edmonton, Alberta T6G 2E9, Canada

2. Athabasca University Faculty of Science and Technology and Athabasca River Basin Research Institute, , 1 University Dr., Athabasca, Alberta T9S 3A3, Canada

Abstract

Abstract Concentrations of selenium that exceed regulatory guidelines have been associated with coal mining activities and have been linked to detrimental effects on aquatic ecosystems and the organisms therein. Although the major route of selenium uptake in macroinvertebrates is via the diet, the uptake of waterborne selenite (HSeO3−), the prominent form at circumneutral pH, can be an important contributor to selenium body burden and thus selenium toxicity. In the current study, radiolabelled selenite (Se75) was used to characterize the mechanism of selenite uptake in the water flea, Daphnia magna. The concentration dependence (1–32 μM) of selenite uptake was determined in 1-hour uptake assays in artificial waters that independently varied in bicarbonate, chloride, sulphate, phosphate and selenate concentrations. At concentrations representative of those found in highly contaminated waters, selenite uptake was phosphate-dependent and inhibited by foscarnet, a phosphate transport inhibitor. At higher concentrations, selenite uptake was dependent on waterborne bicarbonate concentration and inhibited by the bicarbonate transporter inhibitor DIDS (4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid). These findings suggest that concentrations of phosphate in coal mining-affected waters could alter selenite uptake in aquatic organisms and could ultimately affect the toxic impacts of selenium in such waters.

Funder

Natural Science and Engineering Research Council of Canada (NSERC) Discovery

ACA Grants in Biodiversity

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3