Intestinal and Renal Adaptations to Changes of Dietary Phosphate Concentrations in Rat

Author:

Lucea Susana1ORCID,Chopo-Escuin Gema1ORCID,Guillén Natalia1ORCID,Sosa Cecilia1ORCID,Sorribas Víctor1ORCID

Affiliation:

1. Laboratory of Molecular Toxicology, Department of Biochemistry and Cell and Molecular Biology, University of Zaragoza , E50013 Zaragoza , Spain

Abstract

Abstract We have studied the role of the intestine, kidney, and several hormones when adapting to changes in dietary P concentration. Normal and parathyroidectomized (PTX) rats were fed pH-matched diets containing 0.1%, 0.6%, and 1.2% P concentrations. 32Pi uptake was determined in the jejunum and kidney cortex brush border membrane vesicles. Several hormone and ion concentrations were determined in the blood and urine of rats. Both jejunum and kidney cortex Pi transport was regulated with 5 d of chronic feeding of P diets in normal rats. Acute adaptation was determined by switching foods on day 6, which was only clearly observed in the kidney cortex of normal rats, with more statistical variability in the jejunum. However, no paradoxical increase of Pi uptake in the jejunum was reproduced after the acute switch to the 1.2% P diet. Pi uptake in the jejunum was parathyroid hormone (PTH)-independent, but in the kidney, the chronic adaptation was reduced, and no acute dietary adaptations were observed. The NaPi2a protein was more abundant in the PTX than the sham kidneys, but contrary to the modest or absent changes in Pi uptake adaptation, the transporter was similarly regulated by dietary P, as in the sham rats. PTH and fibroblast growth factor 23 (FGF23) were the only hormones regulated by all diet changes, even in fasting animals, which exhibited regulated Pi transport despite similar phosphatemia. Evidence of Pi appetite effects was also observed. In brief, our results show new characteristics of Pi adaptations, including a lack of correlation between Pi transport, NaPi2a expression, and PTH/FGF23 concentrations.

Funder

Ministry of Science and Innovation

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Cell Biology,Molecular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3