Affiliation:
1. Department of Physiology and
2. Vascular Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
3. Department of Anatomy, Faculty of Medicine, University of Hong Kong, Hong Kong, China; and
Abstract
Hyperglycemia is an indication of poor outcome for heart attack patients, even for nondiabetic patients with stress-induced hyperglycemia. Previous studies showed that inhibition of aldose reductase, the first and rate-limiting enzyme of the polyol pathway, attenuated contractile dysfunction in diabetic animals, but the mechanism is unclear. We therefore wanted to find out whether the polyol pathway also contributes to acute hyperglycemia-induced cardiac contractile dysfunction, and determine the mechanism involved. Rat hearts were isolated and retrogradely perfused with Krebs buffer containing either normal or high concentrations of glucose for 2 h. Short exposure to high-glucose medium led to contractile dysfunction as indicated by decreased −dP/d tmax, as well as elevation in left ventricular end-diastolic pressure. Cardiomyocytes incubated in high-glucose medium showed abnormal Ca2+signaling, most likely because of decreased activity of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) inactivated by oxidative stress. Inhibition of aldose reductase or sorbitol dehydrogenase, the second enzyme in the polyol pathway, ameliorated contractile dysfunction, attenuated oxidative stress, and normalized Ca2+signaling and SERCA activity caused by high glucose, indicating that the polyol pathway is the major contributor to acute hyperglycemia-induced oxidative stress leading to the inactivation of SERCA and contractile dysfunction.
Publisher
American Physiological Society
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献