Affiliation:
1. Institute for Applied Physiology, University of Freiburg, D-79104 Freiburg/Breisgau, Germany; and
2. Department of Physiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
Abstract
Myocardial ischemia-reperfusion is associated with bursts of reactive oxygen species (ROS) such as superoxide radicals (O2 −·). Membrane-associated NADH oxidase (NADHox) activity is a hypothetical source of O2 −·, implying the NADH concentration-to-NAD+ concentration ratio ([NADH]/[NAD+]) as a determinant of ROS. To test this hypothesis, cardiac NADHox and ROS formation were measured as influenced by pyruvate or l-lactate. Pre- and postischemic Langendorff guinea pig hearts were perfused at different pyruvate/l-lactate concentrations to alter cytosolic [NADH]/[NAD+]. NADHox and ROS were measured with the use of lucigenin chemiluminescence and electron spin resonance, respectively. In myocardial homogenates, pyruvate (0.05, 0.5 mM) and the NADHox blocker hydralazine markedly inhibited NADHox (16 ± 2%, 58 ± 9%). In postischemic hearts, pyruvate (0.1–5.0 mM) dose dependently inhibited ROS up to 80%. However,l-lactate (1.0–15.0 mM) stimulated both basal and postischemic ROS severalfold. Furthermore,l-lactate-induced basal ROS was dose dependently inhibited by pyruvate (0.1–5.0 mM) and not the xanthine oxidase inhibitor oxypurinol. Pyruvate did not inhibit ROS from xanthine oxidase. The data suggest a substantial influence of cytosolic NADH on cardiac O2 −· formation that can be inhibited by submillimolar pyruvate. Thus cytotoxicities due to cardiac ischemia-reperfusion ROS may be alleviated by redox reactants such as pyruvate.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
119 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献