Methods for identifying precipitates and improving stability of chemically defined highly concentrated cell culture media

Author:

Forte Taylor1,Grinnell Chris2ORCID,Zhang An3,Polilli Brian4,Leshinski John4,Khattak Sarwat3

Affiliation:

1. Cell Culture Development Biogen Cambridge Massachusetts USA

2. Materials Science Biogen Durham North Carolina USA

3. Cell Culture Development Biogen Durham North Carolina USA

4. API Proteins Janssen R&D Malvern Pennsylvania USA

Abstract

AbstractCurrently, within the biopharmaceutical industry, media development is a key area of development as the ratios and concentrations of media components such as amino acids, metals, vitamins, sugars, salts, and buffering agents play arguably the largest role in cellular productivity and product quality. However, optimizing media for these targets often conflicts with solubility limitations and slow‐rate chemical reactions that result in precipitation formation. Here we present methods such as inductively coupled plasma mass spectrometry (ICP‐MS), X‐ray fluorescence (XRF), colorimetry, and turbidity to identify multiple likely components of a complex precipitate that was observed in preparations of a custom nutrient feed medium across all storage conditions evaluated. Using these analytical methods, as well as adjustments to the formulation pH, increasing the pyruvate concentration, and removing sodium bicarbonate, we were able to extend the media shelf life from approximately 10 days to over 28 days. Alternatively, copper, selenium, and magnesium sources were removed from the media and no precipitation was observed until 32 days after prep, pointing to key metals as the probable root cause of precipitation. By analytically quantifying the precipitate using the methods above, instead of visual inspection, which is the current industry standard for media precipitation observation, we were better able to compare conditions to one another and relate them to the onset of precipitation. Cell culture performance and product quality remained comparable to the historical process despite the media formulation changes.

Funder

Biogen

Publisher

Wiley

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3