Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels

Author:

Poulsen K. A.1,Andersen E. C.1,Hansen C. F.1,Klausen T. K.1,Hougaard C.2,Lambert I. H.1,Hoffmann E. K.1

Affiliation:

1. Department of Biology, University of Copenhagen, Copenhagen; and

2. Neurosearch, Ballerup, Denmark

Abstract

Changes in cell volume and ion gradients across the plasma membrane play a pivotal role in the initiation of apoptosis. Here we explore the kinetics of apoptotic volume decrease (AVD) and ion content dynamics in wild-type (WT) and multidrug-resistant (MDR) Ehrlich ascites tumor cells (EATC). In WT EATC, induction of apoptosis with cisplatin (5 μM) leads to three distinctive AVD stages: an early AVD1 (4–12 h), associated with a 30% cell water loss; a transition stage AVDT (∼12 to 32 h), where cell volume is partly recovered; and a secondary AVD2 (past 32 h), where cell volume was further reduced. AVD1 and AVD2 were coupled to net loss of Cl, K+, Na+, and amino acids (ninhydrin-positive substances), whereas during AVDT, Na+ and Cl were accumulated. MDR EATC was resistant to cisplatin, showing increased viability and less caspase 3 activation. Compared with WT EATC, MDR EATC underwent a less pronounced AVD1, an augmented AVDT, and a delay in induction of AVD2. Changes in AVD were associated with inhibition of Cl loss during AVD1, augmented NaCl uptake during AVDT, and a delay of Cl loss during AVD2. Application of the anion channel inhibitor NS3728 inhibited AVD and completely abolished the differences in AVD, ionic movements, and caspase 3 activation between WT and MDR EATC. Finally, the maximal capacity of volume-regulated anion channel was found to be strongly repressed in MDR EATC. Together, these data suggest that impairment of AVD, primarily via modulation of NaCl movements, contribute to protection against apoptosis in MDR EATC.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3