Calcium source diversity in feline lower esophageal sphincter circular and sling muscle

Author:

Muinuddin Ahmad,Neshatian Leila,Gaisano Herbert Y.,Diamant Nicholas E.

Abstract

Within muscular equivalents of cat lower esophageal sphincter (LES), the circular muscle develops greater spontaneous tone, whereas the sling muscle is more responsive to cholinergic stimulation. Smooth muscle contraction involves a combination of calcium release from stores and of calcium entry via several pathways. We hypothesized that there are differences in the sources of Ca2+used for contraction in sling and circular muscles and that these differences could contribute to functional asymmetry observed within LES. Contraction of muscle strips from circular and sling regions of LES was assessed in the presence of TTX. In Ca2+-free Krebs, tone was inhibited to a greater degree in circular than sling muscle. L-type Ca2+channel blockade with nifedipine or verapamil inhibited tone in LES circular but not sling muscle. Sarcoplasmic reticulum (SR) Ca2+-ATPase inhibitor cyclopiazonic acid (CPA) caused greater increase in tone in sling than in circular muscle. The phospholipase C inhibitor U-73122 and the SR inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] receptor blocker 2-aminoethoxydiphenyl borate (2-APB) inhibited tone in circular and sling muscles, demonstrating that continuous release of Ca2+from Ins(1,4,5)P3-sensitive stores is important in tone generation in both muscles. In Ca2+-free Krebs, ACh-induced contractions (AChC) were inhibited to a greater degree in sling than circular muscles. However, nifedipine and verapamil greatly inhibited AChC in the circular but not sling muscle. Depletion of SR Ca2+stores with CPA or inhibition of Ins(1,4,5)P3-mediated store release with either U-73122 or 2-APB inhibited AChC in both muscles. We demonstrate that LES circular and sling muscles 1) use intracellular and extracellular Ca2+sources to different degrees in the generation of spontaneous tone and AChC and 2) use different Ca2+entry pathways. These differences hold the potential for selective modulation of LES tone in health and disease.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3