Differential signal transduction pathways in cat lower esophageal sphincter tone and response to ACh

Author:

Biancani P.1,Harnett K. M.1,Sohn U. D.1,Rhim B. Y.1,Behar J.1,Hillemeier C.1,Bitar K. N.1

Affiliation:

1. Rhode Island Hospital, Providence.

Abstract

Lower esophageal sphincter (LES) basal tone and contraction in response to maximally effective doses (Emax) of acetylcholine (ACh) may be mediated by different intracellular transduction pathways. In the basal state resting tone, inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] formation and levels of diacylglycerol (DAG) (C. Hillemeier, K. N. Bitar, and P. Biancani, unpublished data) are higher in LES circular muscle than in esophageal muscle, which does not maintain tone. In vitro resting tone and spontaneously elevated formation of Ins(1,4,5)P3 in LES circular muscle strips decrease in a dose-dependent manner in response to the phospholipase C antagonist 1-[6-([(17-beta)-3-methoxyestra-1,3, 5(10)-trien-17-yl]amino)hexyl]-1H-pyrrole-2,5-dione (U-73122). Basal Ins(1,4,5)P3 formation, however, is submaximal, since it can be increased by cholinergic stimulation. These data suggest that LES tone is associated with partial activation of phospholipase C. We therefore tested submaximal doses of Ins(1,4,5)P3 and DAG in permeabilized LES muscle cells and found that they act synergistically; their interaction depends on calcium release and is mediated through a protein kinase C (PKC)-dependent pathway. In contrast, we have previously shown that contraction induced by Emax of ACh is mediated through calmodulin-dependent mechanisms (14). To investigate these differences, we tested high and low doses of ACh. Contraction induced by high doses of ACh was inhibited by calmodulin but not by PKC antagonists, as previously reported, but low ACh doses were preferentially inhibited by PKC antagonists. Similarly, low Ins(1,4,5)P3 concentrations activated a PKC-dependent pathway, whereas contraction induced by Emax of Ins(1,4,5)P3 was calmodulin dependent.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of progesterone on colonic motility and fecal output in mice with diarrhea;Neurogastroenterology & Motility;2012-01-27

2. Physiology of the LES;Diseases of the Esophagus;2011-03-08

3. Signaling in TRPV1-induced platelet activating factor (PAF) in human esophageal epithelial cells;American Journal of Physiology-Gastrointestinal and Liver Physiology;2010-02

4. Alterations in muscarinic receptor subtype function in the bladder;Current Bladder Dysfunction Reports;2009-03

5. Quantitation of the Contractile Response Mediated by Two Receptors: M2and M3Muscarinic Receptor-Mediated Contractions of Human Gastroesophageal Smooth Muscle;Journal of Pharmacology and Experimental Therapeutics;2009-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3