Distinct pathways to refill ACh-sensitive internal Ca2+ stores in canine airway smooth muscle

Author:

Bourreau J. P.1,Kwan C. Y.1,Daniel E. E.1

Affiliation:

1. Department of Biomedical Sciences, McMaster University, Hamilton,Ontario, Canada.

Abstract

The ability of extracellular Ca2+ to refill internal Ca2+ stores of canine tracheal smooth muscle after a prior depletion by acetylcholine (ACh) was assessed using a novel sarcoplasmic reticulum (SR) Ca2+ pump inhibitor, cyclopiazonic acid (CPA). The transient contraction induced by ACh in a medium free of Ca2+ was used as an index for the content of agonist-sensitive intracellular Ca2+ stores. CPA inhibited in a concentration-dependent manner the refilling of the stores occurring during high KCl stimulation, and this inhibitory effect was independent of the external Ca2+ concentration. On the other hand, CPA was less effective in inhibiting the refilling occurring during prolonged ACh stimulation, especially when external Ca2+ concentration was raised. At 5.0 mM external Ca2+ or when 0.1 microM BAY 8644 was present in the medium, CPA was ineffective in inhibiting the refilling occurring during prolonged ACh stimulation. The maximum ACh-induced contraction in Ca(2+)-containing medium was independent of the extent of internal store Ca2+ load in the absence of L-type Ca2+ channel blocker but was highly dependent on the extent of internal Ca2+ load in the presence of the Ca2+ channel blocker. Hyperpolarization of the plasma membrane with the K+ channel opener cromakalim reduced the amplitude of ACh tonic contraction. Subsequent addition of nifedipine further reduced ACh tonic contraction. It is concluded that two different pathways for external Ca2+ are used to refill ACh-sensitive internal stores. One involves active Ca2+ uptake via a CPA-sensitive Ca2+ pump, and the other involves a CPA-insensitive pathway whose nature remains to be determined.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3