Differential regulation of Na+/H+exchange isoform activities by enteropathogenicE. coliin human intestinal epithelial cells

Author:

Hecht Gail1,Hodges Kim1,Gill Ravinder K.1,Kear Fely1,Tyagi Sangeeta1,Malakooti Jaleh1,Ramaswamy Krishnamurthy1,Dudeja Pradeep K.1

Affiliation:

1. Section of Digestive and Liver Diseases, Department of Medicine, University of Illinois at Chicago, Chicago IL 60612; and Chicago Veterans Affairs Health Care System, Chicago, Illinois 60612

Abstract

Enteropathogenic Escherichia coli (EPEC) is an important human intestinal foodborne pathogen associated with diarrhea, especially in infants and young children. Although EPEC produces characteristic attaching and effacing lesions and loss of microvilli, the pathophysiology of EPEC-associated diarrhea, particularly during early infection, remains elusive. The present studies were designed to examine the direct effects of EPEC infection on intestinal absorption via Na+/H+exchanger (NHE) isoforms. Caco-2 cells were infected with EPEC strain E2348/69 or nonpathogenic E. coli HB101 for a period of 60 to 120 min. Total NHE activity was significantly increased at 60 min, reaching approximately threefold increase after 90 min of EPEC infection. Similar findings were seen in HT-29 cells and T84 cells indicating that the response was not cell-line specific. Most surprising was the differential regulation of NHE2 and NHE3 by EPEC. Marked activation of NHE2 (300%) occurred, whereas significant inhibition (∼50%) of NHE3 activity was induced. The activity of basolateral isoform NHE1 was also significantly increased in response to EPEC infection. Mutations that disrupted the type III secretion system (TTSS) ablated the effect of EPEC on the activity of both NHE2 and NHE3. These results suggest that EPEC, through a TTSS-dependent mechanism, exerts differential effects on NHE isoform activity in intestinal epithelial cells. Additionally, NHEs do not appear to play any role in EPEC-mediated inflammation, because the NHE inhibitors amiloride and 5-( N-ethyl- N-isopropyl)amiloride did not prevent EPEC-mediated IκBα degradation.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3