Apical Na+/H+ exchange near the base of mouse colonic crypts

Author:

Chu Jingsong1,Chu Shaoyou1,Montrose Marshall H.1

Affiliation:

1. Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120

Abstract

Colonic crypts can absorb fluid, but the identity of the absorptive transporters remains speculative. Near the crypt base, the epithelial cells responsible for vectorial transport are relatively undifferentiated and often presumed to mediate only Clsecretion. We have applied confocal microscopy in combination with an extracellular fluid marker [Lucifer yellow (LY)] or a pH-sensitive dye (2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein) to study mouse colonic crypt epithelial cells directly adjacent to the crypt base within an intact mucosal sheet. Measurements of intracellular pH report activation of colonocyte Na+/H+ exchange in response to luminal or serosal Na+. Studies with LY demonstrate the presence of a paracellular fluid flux, but luminal Na+ does not activate Na+/H+ exchange in the nonepithelial cells of the lamina propria, and studies with LY suggest that the fluid bathing colonocyte basolateral membranes is rapidly refreshed by serosal perfusates. The apical Na+/H+ exchange in crypt colonocytes is inhibited equivalently by luminal 20 μM ethylisopropylamiloride and 20 μM HOE-694 but is not inhibited by luminal 20 μM S-1611. Immunostaining reveals the presence of epitopes from NHE1 and NHE2, but not NHE3, in epithelial cells near the base of colonic crypts. Comparison of apical Na+/H+exchange activity in the presence of Cl with that in the absence of Cl (substitution by gluconate or nitrate) revealed no evidence of the Cl-dependent Na+/H+ exchange that had been previously reported as the sole apical Na+/H+ exchange activity in the colonic crypt. Results suggest the presence of an apical Na+/H+ exchanger near the base of crypts with functional attributes similar to those of the cloned NHE2 isoform.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3