Differential regulation of the expression of Na+/H+ exchanger isoform NHE3 by PKC-α in Caco-2 cells

Author:

Alrefai W. A.1,Scaglione-Sewell B.2,Tyagi S.1,Wartman L.1,Brasitus T. A.2,Ramaswamy K.1,Dudeja P. K.1

Affiliation:

1. Section of Digestive and Liver Diseases, Department of Medicine, University of Illinois at Chicago, and Westside Veterans Affairs Medical Center, Chicago 60612; and

2. Department of Medicine, University of Chicago, Chicago, Illinois 60637

Abstract

Na+/H+ exchange (NHE) activity has been shown to be regulated by various external signals and protein kinases in many tissues and cell types. A family of six NHE isoforms has been identified. Three isoforms, NHE1, NHE2, and NHE3, have been shown to be expressed in the human intestine. The present studies were designed to study regulation of these human NHE isoforms by the α-isoform of protein kinase C (PKC) in the Caco-2 cell line. The mRNA levels of the NHE isoforms in Caco-2 cells were initially measured by a semiquantitative RT-PCR technique in response to PKC downregulation by long-term exposure to 1 μM 12- O-tetradecanoylphorbol-13-acetate (TPA) for 24 h. PKC downregulation resulted in an ∼60% increase in the mRNA level for NHE3, but not for NHE1 or NHE2. Utilizing dichlorobenzimidazole riboside, an agent to block the synthesis of new mRNA, we demonstrated that the increase in the NHE3 mRNA in response to downregulation of PKC was predominantly due to an increase in the rate of transcription, rather than a decrease in the NHE3 mRNA stability. Consistent with the mRNA results, our data showed that amiloride-sensitive22Na+ uptake was increased after incubation of Caco-2 cells with 1 μM TPA for 24 h. To elucidate the role of PKC-α, an isoform downregulated by TPA, the relative abundance of NHE isoform mRNA levels and the apical NHE activity were assessed in Caco-2 cells over- and underexpressing PKC-α. Our results demonstrated that NHE3, but not NHE1 or NHE2, mRNA was downregulated by PKC-α and that apical NHE activity was higher in cells underexpressing PKC-α and lower in cells overexpressing PKC-α than in control cells. In conclusion, these data demonstrate a differential regulation of NHE3, but not NHE2 or NHE1, expression by PKC in Caco-2 cells, and this regulation appears to be predominantly due to PKC-α.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3