Author:
Bos Cécile,Stoll Barbara,Fouillet Hélène,Gaudichon Claire,Guan Xinfu,Grusak Michael A.,Reeds Peter J.,Tomé Daniel,Burrin Douglas G.
Abstract
Previous steady-state continuous-feeding studies have shown that the gut mucosa removes substantial amounts of both dietary and systemic amino acids. However, enteral nutrition is often given under non-steady-state conditions as a bolus meal, and this has been shown to influence systemic metabolism. Therefore, our aim was to quantify the relative metabolism of dietary and systemic lysine by the portal-drained viscera (PDV) under non-steady-state conditions after a single bolus meal. Five 28-day-old piglets implanted with arterial, venous, and portal catheters and with an ultrasonic portal flow probe were given an oral bolus feeding of a milk formula containing a trace quantity of intrinsically 15N-labeled soy protein and a continuous intravenous infusion of [U-13C]lysine for 8 h. Total lysine use by the PDV was maximal 1 h after the meal (891 μmol·kg–1·h–1) and was predominantly of dietary origin (89%), paralleling the enteral delivery of dietary lysine. Intestinal lysine use returned to a low level after 4 h postprandially and was derived exclusively from the arterial supply until 8 h. Cumulative systemic appearance of dietary lysine reached 44 and 80% of the ingested amount 4 and 8 h after the meal, respectively, whereas the PDV first-pass use of dietary lysine was 55 and 32% of the intake for these two periods, respectively. We conclude that the first-pass utilization rate of dietary lysine by the PDV is directly increased by the enteral lysine availability and that it is higher with a bolus than with continuous oral feeding.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献