Affiliation:
1. Biocenter of the University, CH-4056 Basel, Switzerland
Abstract
The first in vivo detection of a vitamin with nuclear magnetic resonance (NMR) is reported for mammalian liver. Vitamin C, also known as ascorbic acid, was monitored noninvasively in rat liver by “whole body”13C NMR spectroscopy at high field after infusion of [1,2-13C2]glucose into anesthetized rats. Generally, the carbon resonances of ascorbic acid overlap with those of other highly abundant cellular metabolites, thus precluding their observation in situ. This problem was resolved by taking advantage of the13C-13C spin couplings introduced by the two covalently bound13C nuclei in [1,2-13C2]glucose. During glucose metabolism, [5,6-13C2]ascorbic acid was synthesized, which also exhibited characteristic13C homonuclear spin couplings. This feature enabled the spectral discrimination of ascorbic acid from overlapping singlet resonances of other metabolites. Quantitative analysis of the spin-coupling patterns provided an estimate of the turnover rate of hepatic ascorbic acid in vivo (1.9 ± 0.4 nmol ⋅ min−1 ⋅ g−1) and a novel approach toward a better understanding of optimal ascorbic acid requirements in humans. The results obtained in vivo were confirmed with high-resolution proton and13C NMR spectroscopy of liver extracts.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献