Skeletal muscle lipid metabolism with obesity

Author:

Hulver Matthew W.1,Berggren Jason R.2,Cortright Ronald N.12,Dudek Ronald W.3,Thompson R. Peter3,Pories Walter J.4,MacDonald Kenneth G.4,Cline Gary W.5,Shulman Gerald I.5,Dohm G. Lynis1,Houmard Joseph A.2

Affiliation:

1. Departments of Physiology,

2. Exercise and Sport Science, Human Performance Laboratory,

3. Anatomy and Cell Biology, and

4. Surgery, The Brody School of Medicine, East Carolina University, Greenville, North Carolina 27858; and

5. Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Abstract

The objectives of this study were to 1) examine skeletal muscle fatty acid oxidation in individuals with varying degrees of adiposity and 2) determine the relationship between skeletal muscle fatty acid oxidation and the accumulation of long-chain fatty acyl-CoAs. Muscle was obtained from normal-weight [ n = 8; body mass index (BMI) 23.8 ± 0.58 kg/m2], overweight/obese ( n = 8; BMI 30.2 ± 0.81 kg/m2), and extremely obese ( n = 8; BMI 53.8 ± 3.5 kg/m2) females undergoing abdominal surgery. Skeletal muscle fatty acid oxidation was assessed in intact muscle strips. Long-chain fatty acyl-CoA concentrations were measured in a separate portion of the same muscle tissue in which fatty acid oxidation was determined. Palmitate oxidation was 58 and 83% lower in skeletal muscle from extremely obese (44.9 ± 5.2 nmol · g−1 · h−1) patients compared with normal-weight (71.0 ± 5.0 nmol · g−1 · h−1) and overweight/obese (82.2 ± 8.7 nmol · g−1 · h−1) patients, respectively. Palmitate oxidation was negatively ( R = −0.44, P = 0.003) associated with BMI. Long-chain fatty acyl-CoA content was higher in both the overweight/obese and extremely obese patients compared with normal-weight patients, despite significantly lower fatty acid oxidation only in the extremely obese. No associations were observed between long-chain fatty acyl-CoA content and palmitate oxidation. These data suggest that there is a defect in skeletal muscle fatty acid oxidation with extreme obesity but not overweight/obesity and that the accumulation of intramyocellular long-chain fatty acyl-CoAs is not solely a result of reduced fatty acid oxidation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 277 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3