Acyl‐CoA synthetase expression in human skeletal muscle is reduced in obesity and insulin resistance

Author:

Poppelreuther Margarete1ORCID,Lundsgaard Anne‐Marie2,Mensberg Pernille3,Sjøberg Kim2,Vilsbøll Tina34,Kiens Bente2,Füllekrug Joachim1ORCID

Affiliation:

1. Molecular Cell Biology Laboratory, Internal Medicine IV University of Heidelberg Heidelberg Germany

2. Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science University of Copenhagen Copenhagen Denmark

3. Clinical Research Steno Diabetes Center Copenhagen Herlev Denmark

4. Department of Clinical Medicine, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark

Abstract

AbstractUpon intramuscular entry, fatty acids are converted to amphiphatic fatty acyl‐CoAs by action of the acyl‐CoA synthetase (ACS) enzymes. While it has been reported that insulin resistant skeletal muscle shows an accumulation of fatty acyl‐CoAs, the role of the enzymes which catalyze their synthesis is still sparsely studied in human muscle, in particular the influence of obesity, and insulin resistance. We analyzed muscle biopsies obtained from normal weight controls (n = 7, average BMI 24), males/females with obesity (n = 7, average BMI 31), and males/females with obesity and type 2 diabetes (T2D) (n = 7, average BMI 34), for relevant ACS (long‐chain acyl‐CoA synthetase 1 (ACSL1), −3 (ACSL3) and − 4 (ACSL4), fatty acid transport protein 1 (FATP1) and − 4 (FATP4)). The mRNA expression was determined by real‐time PCR, and total oleoyl‐CoA synthetase activity was measured. In the males/females with obesity and T2D, the response to 16 weeks of exercise training with minor weight loss was evaluated. ACSL1 is the dominantly expressed ACS isoform in human skeletal muscle. The content of total ACS mRNA, as well as ACSL1 mRNA, were lower in muscle of males/females with obesity and T2D. Exercise training in the males/females with obesity and T2D increased the total ACS enzyme activity, along with a lowering of the HOMA‐IR index. The capacity for synthesis of fatty acyl‐CoAs is lower in skeletal muscle of obese males/females with T2D. This suggests a decreased ability to convert fatty acids to fatty acyl‐CoAs, which in turn may affect their entry into storage or metabolic pathways in muscle. Thus, the accumulation of fatty acyl‐CoAs in the obese or insulin resistant state that has been shown in previous reports is not likely to result from increased fatty acid acylation. The upregulation of ACS activity by exercise training appears beneficial and occurred concomitantly with increased insulin sensitivity.

Funder

Novo Nordisk Foundation Center for Basic Metabolic Research

Publisher

Wiley

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3