Affiliation:
1. Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
Abstract
Whereas the blood microvasculature constitutes a biological barrier to the action of blood-borne insulin on target tissues, the lymphatic microvasculature might act as a barrier to subcutaneously administrated insulin reaching the circulation. Here, we evaluate the interaction of insulin with primary microvascular endothelial cells of lymphatic [human dermal lymphatic endothelial cells (HDLEC)] and blood [human adipose microvascular endothelial cells (HAMEC)] origin, derived from human dermal and adipose tissues, respectively. HDLEC express higher levels of insulin receptor and signal in response to insulin as low as 2.5 nM, while HAMEC only activate signaling at 100 nM (a dose that blood vessels do not normally encounter). Low insulin acts specifically through the insulin receptor, while supraphysiological insulin acts through both the IR and insulin growth factor-1 receptor. At supraphysiological or injection site-compatible doses pertinent to lymphatic microvessels, insulin enters HAMEC and HDLEC via fluid-phase endocytosis. Conversely, at physiologically circulating doses (0.2 nM) pertinent to blood microvessels, insulin enters HAMEC through a receptor-mediated process requiring IR autophosphorylation but not downstream insulin signaling. At physiological doses, internalized insulin is barely degraded and is instead released intact to the extracellular medium. In conclusion, we document for the first time the mechanism of interaction of insulin with lymphatic endothelial cells, which may be relevant to insulin absorption during therapeutic injections. Furthermore, we describe distinct action and uptake routes for insulin at physiological and supraphysiological doses in blood microvascular endothelial cells, providing a potential explanation for previously conflicting studies on endothelial insulin uptake.
Funder
Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Banting and Best Diabetes Centre, University of Toronto (BBDC)
Lipedema Foundation - LE&RN/FDRS
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献