Modulation of airway inflammation and bacterial clearance by epithelial cell ICAM-1

Author:

Humlicek Alicia L.,Pang Liyi,Look Dwight C.

Abstract

Many cell types in the airway express the adhesive glycoprotein for leukocytes intercellular adhesion molecule-1 (ICAM-1) constitutively and/or in response to inflammatory stimuli. In this study, we identified functions of ICAM-1 on airway epithelial cells in defense against infection with Haemophilus influenzae. Initial experiments using a mouse model of airway infection in which the bacterial inoculum was mixed with agar beads that localize inflammation in airways demonstrated that ICAM-1 expression was required for efficient clearance of H. influenzae. Airway epithelial cell ICAM-1 expression required few or no leukocytes, suggesting that epithelial cells could be activated directly by interaction with bacteria. Specific inhibition of ICAM-1 function on epithelial cells by orotracheal injection of blocking antibodies resulted in decreased leukocyte recruitment and H. influenzae clearance in the airway. Inhibition of endothelial cell ICAM-1 resulted in a similar decrease in leukocyte recruitment but did not affect bacterial clearance, indicating that epithelial cell ICAM-1 had an additional contribution to airway defense independent of effects on leukocyte migration. To assess this possibility, we used an in vitro model of neutrophil phagocytosis of bacteria and observed significantly greater engulfment of bacteria by neutrophils adherent to epithelial cells expressing ICAM-1 compared with nonadherent neutrophils. Furthermore, bacterial phagocytosis and killing by neutrophils after interaction with epithelial cells were decreased when a blocking antibody inhibited ICAM-1 function. The results indicate that epithelial cell ICAM-1 participates in neutrophil recruitment into the airway, but its most important role in clearance of H. influenzae may be assistance with neutrophil-dependent bacterial killing.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3