Affiliation:
1. National Heart and Lung Institute, Imperial College School of Medicine, Dovehouse Street, London, United Kingdom;
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death and disability but has only recently been explored from a cellular and molecular perspective. In COPD, chronic inflammation leads to fixed narrowing of small airways and alveolar wall destruction (emphysema). This is characterized by increased numbers of alveolar macrophages, neutrophils, and cytotoxic T lymphocytes, and the release of multiple inflammatory mediators (lipids, chemokines, cytokines, growth factors). There is also a high level of oxidative stress, which may amplify this inflammation. There is increased elastolysis and probable involvement of matrix metalloproteinases. The inflammation and proteolysis in COPD is an amplification of the normal inflammatory response to cigarette smoke. Unlike asthma, this inflammation appears to be resistant to corticosteroids, prompting a search for novel anti-inflammatory therapies that may prevent the relentless progression of the disease.
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
227 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献