Platelet Activating Factor Receptor and Intercellular Adhesion Molecule–1 Expression Increases in the Small Airway Epithelium and Parenchyma of Patients with Idiopathic Pulmonary Fibrosis: Implications for Microbial Pathogenesis

Author:

Shahzad Affan Mahmood12,Lu Wenying13ORCID,Dey Surajit1,Bhattarai Prem1ORCID,Gaikwad Archana Vijay13,Jaffar Jade45ORCID,Westall Glen45,Sutherland Darren67,Singhera Gurpreet Kaur67ORCID,Hackett Tillie-Louise67ORCID,Eapen Mathew Suji13ORCID,Sohal Sukhwinder Singh13

Affiliation:

1. Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia

2. Medical School, Oceania University of Medicine, Apia WS1330, Samoa

3. National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia

4. Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia

5. Department of Immunology and Pathology, Monash University, Melbourne, VIC 3800, Australia

6. Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

7. Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada

Abstract

Background: Idiopathic pulmonary fibrosis (IPF) is an irreversible lung fibrotic disorder of unknown cause. It has been reported that bacterial and viral co-infections exacerbate disease pathogenesis. These pathogens use adhesion molecules such as platelet activating factor receptor (PAFR) and intercellular adhesion molecule-1 (ICAM–1) to gain cellular entry, causing infections. Methods: Immunohistochemical staining was carried out for lung resections from IPF patients (n = 11) and normal controls (n = 12). The quantification of PAFR and ICAM–1 expression is presented as a percentage in the small airway epithelium. Also, type 2 pneumocytes and alveolar macrophages were counted as cells per mm2 of the parenchymal area and presented as a percentage. All image analysis was done using Image Pro Plus 7.0 software. Results: PAFR expression significantly increased in the small airway epithelium (p < 0.0001), type 2 pneumocytes (p < 0.0001) and alveolar macrophages (p < 0.0001) compared to normal controls. Similar trend was observed for ICAM–1 expression in the small airway epithelium (p < 0.0001), type 2 pneumocytes (p < 0.0001) and alveolar macrophages (p < 0.0001) compared to normal controls. Furthermore, the proportion of positively expressed type 2 pneumocytes and alveolar macrophages was higher in IPF than in normal control. Conclusions: This is the first study to show PAFR and ICAM–1 expression in small airway epithelium, type 2 pneumocytes and alveolar macrophages in IPF. These findings could help intervene microbial impact and facilitate management of disease pathogenesis.

Funder

Clifford Craig Foundation Launceston General Hospital

Publisher

MDPI AG

Reference54 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3