Structure and activity of human surfactant protein D from different natural sources

Author:

Arroyo Raquel12ORCID,Echaide Mercedes12,Wilmanowski Robert3,Martín-González Alejandro4ORCID,Batllori Emma25,Galindo Alberto256,Rosenbaum Jan S.7,Moreno-Herrero Fernando4ORCID,Kingma Paul S.89ORCID,Pérez-Gil Jesús12ORCID

Affiliation:

1. Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain

2. Research Institut “Hospital 12 de Octubre (imas12)”, Madrid, Spain

3. Glycotope GmbH, Berlin, Germany

4. Department of Macromolecular Structures, National Center of Biotechnology, CSIC, Madrid, Spain

5. Department of Obstetrics and Gyneacology, Hospital Universitario 12 de Octubre, Madrid, Spain

6. Fetal Medicine Unit-SAMID, Hospital Universitario 12 de Octubre, Madrid, Spain

7. Research and Development Department, Airway Therapeutics LLC, Cincinnati, Ohio

8. Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio

9. Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio

Abstract

Surfactant protein D (SP-D) is a C-type lectin that participates in the innate immune defense of lungs. It binds pathogens through its carbohydrate recognition domain in a calcium-dependent manner. Human surfactant protein D (hSP-D) has been routinely obtained from bronchoalveolar lavage of patients suffering from pulmonary alveolar proteinosis (PAP) and from amniotic fluid (AF). As a consequence of the disease, hSP-D obtained from PAP is found in higher amounts and is mainly composed of higher order oligomeric forms. However, PAP-hSP-D has never been directly compared with nonpathological human protein in terms of structure and biological activity. Moreover, the quantitative distribution of the different hSP-D oligomeric forms in human protein obtained from a natural source has never been evaluated. In this work, we have determined the quantitative distribution of AF-hSP-D oligomers, characterized the sugars attached through the N-glycosylation site of the protein, and compared the activity of hSP-D from AF and PAP with respect to their ability to bind and agglutinate bacteria. We have found that fuzzy balls (40%) are the most abundant oligomeric form in AF-hSP-D, very closely followed by dodecamers (33%), with both together constituting 73% of the protein mass. The glycan attached to the N-glycosylation site was found to be composed of fucose, galactose, sialic acid, and N-acetylglucosamine. Finally, in the functional assays performed, hSP-D obtained from PAP showed higher potency, probably as a consequence of its higher proportion of large oligomers compared with hSP-D from AF.

Funder

Ministerio de Ciencia e Innovación

Regional Government of Madrid

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3