Full-Length Recombinant hSP-D Binds and Inhibits SARS-CoV-2

Author:

Arroyo RaquelORCID,Grant Shawn N.,Colombo MiriamORCID,Salvioni Lucia,Corsi Fabio,Truffi MartaORCID,Ottolina Davide,Hurst Brett,Salzberg Marc,Prosperi DavideORCID,Kingma Paul S.ORCID

Abstract

SARS-CoV-2 infection of host cells is driven by binding of the SARS-CoV-2 spike-(S)-protein to lung type II pneumocytes, followed by virus replication. Surfactant protein SP-D, member of the front-line immune defense of the lungs, binds glycosylated structures on invading pathogens such as viruses to induce their clearance from the lungs. The objective of this study is to measure the pulmonary SP-D levels in COVID-19 patients and demonstrate the activity of SP-D against SARS-CoV-2, opening the possibility of using SP-D as potential therapy for COVID-19 patients. Pulmonary SP-D concentrations were measured in bronchoalveolar lavage samples from patients with corona virus disease 2019 (COVID-19) by anti-SP-D ELISA. Binding assays were performed by ELISAs. Protein bridge and aggregation assays were performed by gel electrophoresis followed by silver staining and band densitometry. Viral replication was evaluated in vitro using epithelial Caco-2 cells. Results indicate that COVID-19 patients (n = 12) show decreased pulmonary levels of SP-D (median = 68.9 ng/mL) when compared to levels reported for healthy controls in literature. Binding assays demonstrate that SP-D binds the SARS-CoV-2 glycosylated spike-(S)-protein of different emerging clinical variants. Binding induces the formation of protein bridges, the critical step of viral aggregation to facilitate its clearance. SP-D inhibits SARS-CoV-2 replication in Caco-2 cells (EC90 = 3.7 μg/mL). Therefore, SP-D recognizes and binds to the spike-(S)-protein of SARS-CoV-2 in vitro, initiates the aggregation, and inhibits viral replication in cells. Combined with the low levels of SP-D observed in COVID-19 patients, these results suggest that SP-D is important in the immune response to SARS-CoV-2 and that rhSP-D supplementation has the potential to be a novel class of anti-viral that will target SARS-CoV-2 infection.

Funder

Fondazione Cariplo

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural insights into ACE2 interactions and immune activation of SARS-CoV-2 and its variants: an in-silico study;Journal of Biomolecular Structure and Dynamics;2023-11-20

2. Pulmonary Surfactant: A Mighty Thin Film;Chemical Reviews;2023-10-20

3. Circulating Surfactant Protein D: A Biomarker for Acute Lung Injury?;Biomedicines;2023-09-12

4. Pulmonary surfactant-derived antiviral actions at the respiratory surface;Current Opinion in Colloid & Interface Science;2023-08

5. Drugs for COVID-19 Treatment: A New Challenge;Applied Biochemistry and Biotechnology;2023-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3