Limb Stiffness Is Modulated With Spatial Accuracy Requirements During Movement in the Absence of Destabilizing Forces

Author:

Wong Jeremy,Wilson Elizabeth T.,Malfait Nicole,Gribble Paul L.

Abstract

The motor system can use a number of mechanisms to increase movement accuracy and compensate for perturbing external forces, interaction torques, and neuromuscular noise. Empirical studies have shown that stiffness modulation is one adaptive mechanism used to control arm movements in the presence of destabilizing external force loads. Other work has shown that arm muscle activity is increased at movement end for reaching movements to small visual targets and that changes in stiffness at movement end are oriented to match changes in visual accuracy requirements such as target shape. In this study, we assess whether limb stiffness is modulated to match spatial accuracy requirements during movement, conveyed using visual stimuli, in the absence of external force loads. Limb stiffness was estimated in the middle of reaching movements to visual targets located at the end of a narrow (8 mm) or wide (8 cm) visual track. When greater movement accuracy was required, we observed modest but reliable increases in limb stiffness in a direction perpendicular to the track. These findings support the notion that the motor system uses stiffness control to augment movement accuracy during movement and does so in the absence of external unstable force loads, in response to changing accuracy requirements conveyed using visual cues.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3