What Aimed Movement Models Fit Distal Pointing With Varying Depth?

Author:

Wang Yuqian1,Goonetilleke Ravindra S.2ORCID,Lin Ray F.3ORCID

Affiliation:

1. Hong Kong University of Science and Technology, Hong Kong

2. Khalifa University, UAE

3. Yuan Ze University, Taiwan

Abstract

Objective With the rapid improvements in drone technology, there is an increasing interest in distal pointing to diffuse drones. This study investigated the effect of depth on distal pointing when the hand does not traverse the entire distance from start to target so that the most suitable mathematical model can be assessed. Background Starting from the Fitts paradigm, researchers have proposed different models to predict movement time when the distance to the target is variable. They do consider distance, but they are based on statistical modeling rather than the underlying control mechanisms. Methods Twenty-four participants volunteered for an experiment in a full-factorial Fitts’ paradigm task (3 levels of movement amplitude *7 levels of target width *3 levels of distance from participant to screen). Movement time and the number of errors were the dependent variables. Results Depth has a significant effect when the target width is small, but depth has no effect when the target width is large. The angular version of the two-part model is superior to the one-part Fitts’ model at larger distances. Besides, Index of difficulty for distal pointing, [Formula: see text] with adjustable k achieves the best fit even though the model is very sensitive to the value of k and the complexity of the model could be resulting in an overfitting. The result implies that the effects of movement amplitude and target width are not comparable and grouping them to form a dependent index of difficulty can be misleading especially when distance is an added variable. Conclusion The angular version of the two-part model is a viable and meaningful description for distal pointing. Even though the [Formula: see text] with adjustable k is the best predictor for movement time when depth is an added variable, there is no physical interpretation for it. Application A reasonable predictive model for performance assessments and predictions in distal pointing.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3