Control of Hand Impedance Under Static Conditions and During Reaching Movement

Author:

Darainy Mohammad,Towhidkhah Farzad,Ostry David J.

Abstract

It is known that humans can modify the impedance of the musculoskeletal periphery, but the extent of this modification is uncertain. Previous studies on impedance control under static conditions indicate a limited ability to modify impedance, whereas studies of impedance control during reaching in unstable environments suggest a greater range of impedance modification. As a first step in accounting for this difference, we quantified the extent to which stiffness changes from posture to movement even when there are no destabilizing forces. Hand stiffness was estimated under static conditions and at the same position during both longitudinal (near to far) and lateral movements using a position-servo technique. A new method was developed to predict the hand “reference” trajectory for purposes of estimating stiffness. For movements in a longitudinal direction, there was considerable counterclockwise rotation of the hand stiffness ellipse relative to stiffness under static conditions. In contrast, a small counterclockwise rotation was observed during lateral movement. In the modeling studies, even when we used the same modeled cocontraction level during posture and movement, we found that there was a substantial difference in the orientation of the stiffness ellipse, comparable with that observed empirically. Indeed, the main determinant of the orientation of the ellipse in our modeling studies was the movement direction and the muscle activation associated with movement. Changes in the cocontraction level and the balance of cocontraction had smaller effects. Thus even when there is no environmental instability, the orientation of stiffness ellipse changes during movement in a manner that varies with movement direction.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference20 articles.

1. Muscles across the elbow joint: A biomechanical analysis

2. Physiological considerations of muscle force through the elbow joint

3. Burdet E, Osu R. Development of a New Method for Identifying Muscle Stiffness During Human Arm Movements. Report 1–21. Japan: Kawato Dynamic Brain Project, ERATO, JST, 1999.

4. The central nervous system stabilizes unstable dynamics by learning optimal impedance

5. A method for measuring endpoint stiffness during multi-joint arm movements

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3