Integration of Excitatory Postsynaptic Potentials in Dendrites of Motoneurons of Rat Spinal Cord Slice Cultures

Author:

Larkum Matthew E.1,Launey Thomas1,Dityatev Alexander1,Lüscher Hans-R.1

Affiliation:

1. Department of Physiology, University of Bern, CH-3012 Bern, Switzerland

Abstract

Larkum, Matthew E., Thomas Launey, Alexander Dityatev, and Hans-R. Lüscher. Integration of excitatory postsynaptic potentials in dendrites of motoneurons of rat spinal cord slice cultures. J. Neurophysiol. 80: 924–935, 1998. We examined the attenuation and integration of spontaneous excitatory postsynaptic potentials (sEPSPs) in the dendrites of presumed motoneurons (MNs) of organotypic rat spinal cord cultures. Simultaneous whole cell recordings in current-clamp mode were made from either the soma and a dendrite or from two dendrites. Direct comparison of the two voltage recordings revealed that the membrane potentials at the two recording sites followed each other very closely except for the fast-rising phases of the EPSPs. The dendritic recording represented a low-pass filtered version of the somatic recording and vice versa. A computer-assisted method was developed to fit the sEPSPs with a generalized α-function for measuring their amplitudes and rise times (10–90%). The mean EPSP peak attenuation between the two recording electrodes was determined by a maximum likelihood analysis that extracted populations of similar amplitude ratios from the fitted events at each electrode. For each pair of recordings, the amplitude attenuation ratio for EPSP traveling from dendrite to soma was larger than that traveling from soma to dendrite. The linear relation between mean ln attenuation and distance between recording electrodes was used to map 1/ e attenuations into units of distance (μm). For EPSPs with typical time course traveling from the somatic to the dendritic recording electrode, the mean 1/ e attenuation corresponded to 714 μm; for EPSPs traveling in the opposite direction, the mean 1/ e attenuation corresponded to 263 μm. As predicted from cable analysis, fast EPSPs attenuated more in both the somatofugal and somatopetal direction than did slow EPSPs. For EPSPs with rise times shorter than ∼2.0 ms, the attenuation factor increased steeply. Compartmental computer modeling of the experiments with biocytin-filled and reconstructed MNs that used passive membrane properties revealed amplitude attenuation ratios of the EPSP traveling in both the somatofugal and somatopetal direction that were comparable to those observed in real experiments. The modeling of a barrage of sEPSPs further confirmed that the somato-dendritic compartments of a MN are virtually isopotential except for the fast-rising phase of EPSPs. Large, transient differences in membrane potential are locally confined to the site of EPSP generation. Comparing the modeling results with the experiments suggests that the observed attenuation ratios are adequately explained by passive membrane properties alone.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3