Amplification and linearization of distal synaptic input to cortical pyramidal cells

Author:

Bernander O.1,Koch C.1,Douglas R. J.1

Affiliation:

1. Computation and Neural Systems Program, California Institute ofTechnology, Pasadena 91125.

Abstract

1. Computer simulations were used to study the effect of voltage-dependent calcium and potassium conductances in the apical dendritic tree of a pyramidal cell on the synaptic efficacy of apical synaptic input. The apical tuft in layers 1 and 2 is the target of feedback projections from other cortical areas. 2. The current, Isoma, flowing into the soma in response to synaptic input was used to assess synaptic efficacy. This measure takes full account of all the relevant nonlinearities in the dendrities and can be used during spiking activity. Isoma emphasizes current flowing in response to synaptic input rather than synaptically induced voltage change. This measure also permits explicit characterization of the input-output relationship of the entire neuron by computing the relationship between presynaptic input and postsynaptic output frequency. 3. Simulations were based on two models. The first was a biophysically detailed 400-compartment model of a morphologically characterized layer 5 pyramidal cell from striate cortex of an adult cat. In this model eight voltage-dependent conductances were incorporated into the somatic membrane to provide the observed firing behavior of a regular spiking cell. The second model was a highly simplified three-compartment equivalent electrical circuit. 4. If the dendritic tree is entirely passive, excitatory synaptic input of the non-N-methyl-D-aspartate (non-NMDA) type to layers 1, 2, and 3 saturate at very moderate input rates, because of the high input impedance of the apical tuft. Layers 1 and 2 together can deliver only 0.25 nA current to the soma. This modest effect is surprising in view of the important afferents that synapse on the apical tuft and is inconsistent with experimental data indicating a more powerful effect. 5. We introduced in a controlled manner a voltage-dependent potassium conductance in the apical tuft, gK, to prevent saturation of the synaptic response. This conductance was designed to linearize the relationship between presynaptic input frequency and the somatic current. We also introduced a voltage-dependent calcium conductance along the apical trunk, gCa, to amplify the apical signal, i.e., the synaptic current reaching the soma. 6. To arrive at a specific relationship between the presynaptic input rate and the somatic current delivered by the synaptic input, we derived the activation curves of gK and gCa either analytically or numerically. The resultant voltage-dependent behavior of both conductances was similar to experimentally measured activation curves.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3