Evaluating spatial and network properties of NMDA-dependent neuronal connectivity in mixed cortical cultures

Author:

Rojvirat Catherine P.,Berlin Joshua R.ORCID,Nguyen Tuan D.

Abstract

ABSTRACTA technique combining fluorescence imaging with Ca2+ indicators and single-cell laser scanning photostimulation of caged glutamate (LSPS) allows identification of functional connections between individual neurons in mixed cultures of rat neocortical cells as well as observation of synchronous spontaneous activity among neurons. LSPS performed on large numbers of neurons yielded maps of functional connections between neurons and allowed calculation of neuronal network parameters. LSPS also provided an indirect measure of excitability of neurons targeted for photostimulation. By repeating LSPS sessions with the same neurons, stability of connections and change in the number and strength of connections were also determined. Experiments were conducted in the presence of bicuculline to study the properties of excitatory neurotransmission. The AMPA receptor inhibitor, 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX), abolished synchronous neuronal activity but had no effect on connections mapped by LSPS. In contrast, the NMDA receptor inhibitor, 2-Amino-5-phosphono-pentanoic acid (APV), dramatically decreased the number of functional connections between neurons while also affecting synchronous spontaneous activity. Functional connections were also decreased by increasing extracellular Mg2+ concentration. These data demonstrated that LSPS mapping interrogates NMDA receptor-dependent connectivity between neurons in the network. A GluN2A-specific inhibitor, NVP-AAM077, decreased the number and strength of connections between neurons as well as neuron excitability. Conversely, the GluN2A-specific positive modulator, GNE-0723, increased these same properties. These data showed that LSPS can be used to directly study perturbations in the properties of NMDA receptor-dependent connectivity in neuronal networks. This approach should be applicable in a wide variety of in vitro and in vivo experimental preparations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3