Wiener Kernels of Chinchilla Auditory-Nerve Fibers: Verification Using Responses to Tones, Clicks, and Noise and Comparison With Basilar-Membrane Vibrations

Author:

Temchin Andrei N.,Recio-Spinoso Alberto,van Dijk Pim,Ruggero Mario A.

Abstract

Responses to tones, clicks, and noise were recorded from chinchilla auditory-nerve fibers (ANFs). The responses to noise were analyzed by computing the zeroth-, first-, and second-order Wiener kernels (h0, h1, and h2). The h1s correctly predicted the frequency tuning and phases of responses to tones of ANFs with low characteristic frequency (CF). The h2s correctly predicted the frequency tuning and phases of responses to tones of all ANFs, regardless of CF. Also regardless of CF, the kernels jointly predicted about 77% of the features of ANF responses to “frozen” samples of noise. Near-CF group delays of kernels and signal-front delays of responses to intense rarefaction clicks exceeded by 1 ms the corresponding basilar-membrane delays at both apical and basal sites of the chinchilla cochlea. This result, confirming that synaptic and neural processes amount to 1 ms regardless of CF, permitted drawing a map of basilar-membrane delay as a function of position for the entire length of the chinchilla cochlea, a first for amniotic species.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference37 articles.

1. Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea

2. Cooper NP and Rhode WS. Fast travelling waves, slow travelling waves and their interactions in experimental studies of apical cochlear mechanics. Aud Neurosci 2: 289–299, 1996.

3. de Boer E. Reverse correlation. II. Initiation of nerve impulses in the inner ear. Proc K Ned Akad Wet C 72: 129–151, 1969.

4. On the Principle of Specific Coding

5. Time‐Domain Measurements of Cochlear Nonlinearities Using Combination Click Stimuli

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3