On the Principle of Specific Coding

Author:

De Boer E.1

Affiliation:

1. Physics Lab., ORL Dept. (KNO), Wilhelmina Hospital, Amsterdam, Netherlands

Abstract

In the inner ear (cochlea) the acoustical stimulus is encoded into the ensemble of pulse series occurring in each of the 40,000 nerve fibers of the auditory nerve. The cochlea exhibits, on hydrodynamic grounds, a frequency-to-space transformation with a modest amount of frequency resolution. For sinusoidal stimuli the nerve fibers show a far greater frequency selectivity. The instants at which action potentials (nerve pulses of uniform waveform) may occur in an individual nerve fiber can be predicted from a signal transformation model which contains as its most essential elements a linear filter followed by a triggerable pulse generator. This model explains frequency selectivity and phase locking for sinusoidal stimuli in a satisfactory way, provided the correct parameters are selected in accordance with the specific properties of the nerve fiber under study. Whether such, a model would represent frequency resolution in a more general sense, remains to be seen. As far as the linear circuit, part one of the model, is concerned, application of a cross-correlation technique under stimulation with white noise would yield the filter’s impulse response characteristic. However, in the physiological experiment the output of the filter is not accessible. It has been shown that with a special correlation technique, utilizing the (analog) stimulus signal and the (digital) series of action potentials of a nerve fiber, it is possible to recover the essential properties of the linear filter’s impulse response. Application of this “reverse correlation” technique in experiments on anaesthetized cats has shown that under stimulation with white noise the filter has a very sharp frequency response. This effective frequency response agrees well with the one obtained with sinusoidal signals. That this response is so much sharper than the mechanics of the cochlea would allow for, remains a puzzling, and as yet unexplainable, fact. It is concluded that frequency analysis in the cochlea proceeds as if it were realized by a linear filter and the initiation of nerve pulses is a process that operates quite independently of it. Each one of the nerve fibers of the auditory nerve is apparently excited by a specific portion of the acoustical stimulus’ frequency spectrum; the “resonance frequencies” of the fibers covering the entire range of audible frequencies. This property is referred to as the “principle of specific coding.” The findings bear an interesting relation to properties of the (human) auditory system that have been obtained by psychophysical experiments. From several problem areas one can infer that the manner of signal encoding as described by the principle of specific coding is not exhaustive. It may well be possible that finer details about the excitation pattern of nerve fibers are processed by higher auditory centers.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3