Weakly nonlinear responses at low intrinsic noise levels in two types of electrosensory primary afferents

Author:

Barayeu Alexandra,Schlungbaum MariaORCID,Lindner BenjaminORCID,Benda JanORCID,Grewe JanORCID

Abstract

AbstractNeuronal processing is inherently nonlinear — spiking thresholds or rectification in synapses are central to neuronal computations. Nevertheless, linear response theory has been instrumental in understanding, for example, the impact of noise or synchronous spikes on signal transmission, or the emergence of oscillatory activity. At higher signal-to-noise ratios, however, the third term in the Volterra series becomes relevant. This second-order susceptibility captures nonlinear interactions between pairs of stimulus frequencies. Theoretical results for leaky integrate-and-fire neurons suggest strong responses at the sum of two input frequencies only when these frequencies or their sum match the neuron’s baseline firing rate. We here analyze second-order susceptibilities in two types of primary electroreceptor afferents, P-units of the active and ampullary cells of the passive electrosensory system of the wave-type electric fishApteronotus leptorhynchus. In our combined experimental and modeling approach we find the predicted weakly nonlinear responses in some P-units with very low baseline interspike-interval variability and much stronger in all ampullary cells, which are less noisy than P-units. Such nonlinear responses boost responses to weak sinusoidal stimuli and are therefore of immediate relevance for wave-type electric fish that are exposed to superpositions of many frequencies in social contexts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3