Relative contributions of thalamic reticular nucleus neurons and intrinsic interneurons to inhibition of thalamic neurons projecting to the motor cortex

Author:

Ando N.1,Izawa Y.1,Shinoda Y.1

Affiliation:

1. Department of Physiology, School of Medicine, Tokyo Medical and DentalUniversity, Japan.

Abstract

1. Intracellular responses to stimulation of the cerebral cortex (Cx) and cerebellum were analyzed in thalamocortical neurons (TCNs) in the ventroanterior-ventrolateral (VA-VL) complex of the thalamus and neurons in the thalamic reticular nuclei (RNs) of anesthetized cats, and the contribution of reticular nucleus neurons (RNNs) and thalamic interneurons (TINs) to cerebral and cerebellar inhibition of TCNs was determined. 2. Single TCNs projecting to area 4 or 6 received convergent monosynaptic excitatory and disynaptic inhibitory inputs from both the dentate nucleus (DN) and the interpositus nucleus (IN). These TCNs also received monosynaptic excitatory postsynaptic potentials (EPSPs) and disynaptic inhibitory postsynaptic potentials (IPSPs) from the pericruciate cortex (areas 4 and 6). Each TCN received the strongest excitatory and inhibitory inputs from the cortical area to which that TCN projected, and weaker inhibitory inputs from adjacent cortical areas. 3. RNNs were identified morphologically by intracellular injection of horseradish peroxidase (HRP). Stimulation of the brachium conjunctivum (BC) evoked disynaptic EPSPs with a long decay phase in RNNs in the anterior ventrolateral part of the RN. Single RNNs received convergent disynaptic excitatory inputs from both the DNA and the IN. Stimulation of the Cx produced monosynaptic long-lasting EPSPs with two different latencies in these RNNs: early EPSPs with latencies of 0.9-2.1 ms and late EPSPs with latencies of 1.8-3.5 ms. Collision experiments with BC- and Cx-evoked EPSPs in RNNs indicated that BC-evoked disynaptic EPSPs and Cx-evoked early EPSPs were produced by axon collaterals of TCNs to RNNs. The latencies of the Cx-evoked late EPSPs in RNNs were almost identical to those of Cx-evoked monosynaptic EPSPs in TCNs, indicating that corticothalamic neurons (CTNs) exert monosynaptic excitatory effects on RNNs and TCNs. 4. Stimulation of the Cx produced IPSPs in TCNs with short latencies of 1.8-2.7 ms and longer latencies of > or = 2.8 ms. The Cx-evoked early IPSPs with latencies of 1.8-2.7 ms were mediated by RNNs. The origin of Cx-evoked late IPSPs with latencies of > or = 2.8 ms in TCNs was twofold, Cx-induced early IPSPs in TCNs were facilitated by conditioning cortical stimulation that induced late IPSPs in the TCNs. The same conditioning cortical stimulation also facilitated BC-evoked disynaptic IPSPs. The time course of this facilitatation indicated that CTNs produce long-lasting excitation in TINs. These results indicated that Cx-evoked IPSPs with latencies of > 2.7 ms were mediated at least in part by RNNs and inhibitory TINs in the VA-VL complex.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3