Cerebellar rTMS and PAS effectively induce cerebellar plasticity

Author:

Pauly Martje G.,Steinmeier Annika,Bolte Christina,Hamami Feline,Tzvi Elinor,Münchau Alexander,Bäumer Tobias,Weissbach Anne

Abstract

AbstractNon-invasive brain stimulation techniques including repetitive transcranial magnetic stimulation (rTMS), continuous theta-burst stimulation (cTBS), paired associative stimulation (PAS), and transcranial direct current stimulation (tDCS) have been applied over the cerebellum to induce plasticity and gain insights into the interaction of the cerebellum with neo-cortical structures including the motor cortex. We compared the effects of 1 Hz rTMS, cTBS, PAS and tDCS given over the cerebellum on motor cortical excitability and interactions between the cerebellum and dorsal premotor cortex / primary motor cortex in two within subject designs in healthy controls. In experiment 1, rTMS, cTBS, PAS, and tDCS were applied over the cerebellum in 20 healthy subjects. In experiment 2, rTMS and PAS were compared to sham conditions in another group of 20 healthy subjects. In experiment 1, PAS reduced cortical excitability determined by motor evoked potentials (MEP) amplitudes, whereas rTMS increased motor thresholds and facilitated dorsal premotor-motor and cerebellum-motor cortex interactions. TDCS and cTBS had no significant effects. In experiment 2, MEP amplitudes increased after rTMS and motor thresholds following PAS. Analysis of all participants who received rTMS and PAS showed that MEP amplitudes were reduced after PAS and increased following rTMS. rTMS also caused facilitation of dorsal premotor-motor cortex and cerebellum-motor cortex interactions. In summary, cerebellar 1 Hz rTMS and PAS can effectively induce plasticity in cerebello-(premotor)-motor pathways provided larger samples are studied.

Funder

Deutsche Forschungsgemeinschaft

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference84 articles.

1. Itō, M. The Cerebellum and Neural Control (Raven Press, London, 1984).

2. Milardi, D. et al. The cortico-basal ganglia-cerebellar network: Past, present and future perspectives. Front. Syst. Neurosci. 13, 61 (2019).

3. Quartarone, A. et al. New insights into cortico-basal-cerebellar connectome: Clinical and physiological considerations. Brain 143, 396–406 (2020).

4. D’Angelo, E. Physiology of the Cerebellum Vol. 154 (Elsevier, Amsterdam, 2018).

5. Spampinato, D. A., Block, H. J. & Celnik, P. A. Cerebellar–M1 connectivity changes associated with motor learning are somatotopic specific. J. Neurosci. 37, 2377–2386 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3