Alternative to Hand-Tuning Conductance-Based Models: Construction and Analysis of Databases of Model Neurons

Author:

Prinz Astrid A.1,Billimoria Cyrus P.1,Marder Eve1

Affiliation:

1. Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454

Abstract

Conventionally, the parameters of neuronal models are hand-tuned using trial-and-error searches to produce a desired behavior. Here, we present an alternative approach. We have generated a database of about 1.7 million single-compartment model neurons by independently varying 8 maximal membrane conductances based on measurements from lobster stomatogastric neurons. We classified the spontaneous electrical activity of each model neuron and its responsiveness to inputs during runtime with an adaptive algorithm and saved a reduced version of each neuron's activity pattern. Our analysis of the distribution of different activity types (silent, spiking, bursting, irregular) in the 8-dimensional conductance space indicates that the coarse grid of conductance values we chose is sufficient to capture the salient features of the distribution. The database can be searched for different combinations of neuron properties such as activity type, spike or burst frequency, resting potential, frequency–current relation, and phase-response curve. We demonstrate how the database can be screened for models that reproduce the behavior of a specific biological neuron and show that the contents of the database can give insight into the way a neuron's membrane conductances determine its activity pattern and response properties. Similar databases can be constructed to explore parameter spaces in multicompartmental models or small networks, or to examine the effects of changes in the voltage dependence of currents. In all cases, database searches can provide insight into how neuronal and network properties depend on the values of the parameters in the models.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3