Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters

Author:

Canavier C. C.1,Clark J. W.1,Byrne J. H.1

Affiliation:

1. Department of Electrical and Computer Engineering, Rice University,Houston 77251-1892.

Abstract

1. An equivalent circuit model of the R15 bursting neuron in Aplysia has been combined with a fluid compartment model, resulting in a model that incorporates descriptions of most of the membrane ion channels that are known to exist in the somata of R15, as well as providing a Ca2+ balance on the cell. 2. A voltage-activated, calcium-inactivated Ca2+ current (denoted the slow inward current ISI) was sufficient to produce bursting activity without invoking any other calcium-dependent currents (such as a nonspecific cation current, INS, or a calcium-activated K+ current, IK,Ca). Furthermore, many characteristics of a typical R15 burst could be simulated, such as a parabolic variation in interspike interval, the depolarizing afterpotential (DAP), and the progressive decrease in the undershoots of spikes during a burst. 3. The dynamic activity of R15 was analyzed by separately characterizing two different temporal domains; the fast dynamics associated with action potentials and the slow dynamics associated with low-amplitude oscillations lasting tens of seconds ("slow waves"). The slow dynamics were isolated by setting the Na+ conductance (gNa) to zero and then studied by the use of a system of equations reduced to two variables: intracellular concentration of Ca2+ and membrane potential. The fixed point of the system was located at the intersection of the nullclines for these two variables. A stability analysis of the fixed point was then used to determine whether a given set of parameters would produce slow-wave activity. 4. If the reduced model predicted slow-wave oscillations for a given set of parameters with gNa set to zero, then bursting activity was observed for the same set of parameters in the full model with gNa reset to its control value. However, for certain sets of parameters with gNa at its usual value, the full model exhibited bursting activity because of a slow oscillation produced by the activation of INS by action potentials. This oscillation resulted from an interaction between the fast and slow dynamics that the reduced model alone could not predict and was not observed when gNa was subsequently set to zero. If gNS was also set to zero, this discrepancy disappeared.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3