Differentiable simulation enables large-scale training of detailed biophysical models of neural dynamics

Author:

Deistler MichaelORCID,Kadhim Kyra L.ORCID,Pals MatthijsORCID,Beck Jonas,Huang Ziwei,Gloeckler Manuel,Lappalainen Janne K.ORCID,Schröder CorneliusORCID,Berens PhilippORCID,Gonçalves Pedro J.,Macke Jakob H.ORCID

Abstract

AbstractBiophysical neuron models provide insights into cellular mechanisms underlying neural computations. However, a central challenge has been the question of how to identify the parameters of detailed biophysical models such that they match physiological measurements at scale or such that they perform computational tasks. Here, we describe a framework for simulation of detailed biophysical models in neuroscience—Jaxley—which addresses this challenge. By making use of automatic differentiation and GPU acceleration, Jaxleyopens up the possibility to efficiently optimize large-scale biophysical models with gradient descent. We show that Jaxleycan learn parameters of biophysical neuron models with several hundreds of parameters to match voltage or two photon calcium recordings, sometimes orders of magnitude more efficiently than previous methods. We then demonstrate that Jaxleymakes it possible to train biophysical neuron models to perform computational tasks. We train a recurrent neural network to perform working memory tasks, and a feedforward network of morphologically detailed neurons with 100,000 parameters to solve a computer vision task. Our analyses show that Jaxleydramatically improves the ability to build large-scale data- or task-constrained biophysical models, creating unprecedented opportunities for investigating the mechanisms underlying neural computations across multiple scales.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3