Synaptic Drive to Motoneurons During Fictive Swimming in the Developing Zebrafish

Author:

Buss Robert R.1,Drapeau Pierre1

Affiliation:

1. Centre for Research in Neuroscience, Montreal General Hospital Research Institute; and Department of Neurology and Neurosurgery and Department of Biology, McGill University, Montreal, Quebec H3G 1A4, Canada

Abstract

The development of swimming behavior and the correlated activity patterns recorded in motoneurons during fictive swimming in paralyzed zebrafish larvae were examined and compared. Larvae were studied from when they hatch (after 2 days) and are first capable of locomotion to when they are active swimmers capable of capturing prey (after 4 days). High-speed (500 Hz) video imaging was used to make a basic behavioral characterization of swimming. At hatching and up to day 3, the larvae swam infrequently and in an undirected fashion. They displayed sustained bursts of contractions (‘burst swimming’) at an average frequency of 60–70 Hz that lasted from several seconds to a minute in duration. By day 4 the swimming had matured to a more frequent and less erratic “beat-and-glide” mode, with slower (∼35 Hz) beats of contractions for ∼200 ms alternating with glides that were twice as long, lasting from just a few cycles to several minutes overall. In whole cell current-clamp recordings, motoneurons displayed similar excitatory synaptic activity and firing patterns, corresponding to either fictive burst swimming (day 2–3) or beat-and-glide swimming (day 4). The resting potentials were similar at all stages (about −70 mV) and the motoneurons were depolarized (to about −40 mV) with generally non-overshooting action potentials during fictive swimming. The frequency of sustained inputs during fictive burst swimming and of repetitive inputs during fictive beat-and glide swimming corresponded to the behavioral contraction patterns. Fictive swimming activity patterns were eliminated by application of glutamate antagonists (kynurenic acid or 6-cyano-7-nitroquinoxalene-2,3-dione anddl-2-amino-5-phosphonovaleric acid) and were modified but maintained in the presence of the glycinergic antagonist strychnine. The corresponding synaptic currents underlying the synaptic drive to motoneurons during fictive swimming could be isolated under voltage clamp and consisted of cationic [glutamatergic postsynaptic currents (PSCs)] and anionic inputs (glycinergic PSCs). Either sustained or interrupted patterns of PSCs were observed during fictive burst or beat-and-glide swimming, respectively. During beat-and-glide swimming, a tonic inward current and rhythmic glutamatergic PSCs (∼35 Hz) were observed. In contrast, bursts of glycinergic PSCs occurred at a higher frequency, resulting in a more tonic pattern with little evidence for synchronized activity. We conclude that a rhythmic glutamatergic synaptic drive underlies swimming and that a tonic, shunting glycinergic input acts to more closely match the membrane time constant to the fast synaptic drive.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3