Shared and unique consequences of Joubert Syndrome gene dysfunction on the zebrafish central nervous system

Author:

Noble Alexandra R.ORCID,Masek MarkusORCID,Hofmann Claudia,Cuoco Arianna,Rusterholz Tamara D. S.,Özkoc HayriyeORCID,Greter Nadja R.ORCID,Vladimirov NikitaORCID,Kollmorgen Sepp,Stoeckli EstherORCID,Bachmann-Gagescu RuxandraORCID

Abstract

AbstractJoubert Syndrome (JBTS) is a neurodevelopmental ciliopathy defined by a highly specific midbrain-hindbrain malformation, variably associated with additional neurological features. JBTS displays prominent genetic heterogeneity with >40 causative genes that encode proteins localising to the primary cilium, a sensory organelle that is essential for transduction of signalling pathways during neurodevelopment, among other vital functions. JBTS proteins localise to distinct ciliary subcompartments, suggesting diverse functions in cilium biology. Currently, there is no unifying pathomechanism to explain how dysfunction of such diverse primary cilia-related proteins results in such a highly specific brain abnormality. In order to identify the shared consequence of JBTS gene dysfunction, we carried out transcriptomic analysis using zebrafish mutants for the JBTS-causative genescc2d2auw38, cep290fh297, inpp5ezh506, talpid3i264andtogaram1zh510and the Bardet-Biedl syndrome-causative genebbs1k742.We identified no commonly dysregulated signalling pathways in these mutants and yet all mutants displayed an enrichment of altered gene sets related to central nervous system function. We found that JBTS mutants have altered primary cilia throughout the brain, however do not display abnormal brain morphology. Nonetheless, behavioural analyses revealed reduced locomotion and loss of postural control which, together with the transcriptomic results, hint at underlying abnormalities in neuronal activity and/or neuronal circuit function. These zebrafish models therefore offer the unique opportunity to study the role of primary cilia in neuronal function beyond early patterning, proliferation and differentiation.Summary StatementJoubert Syndrome gene dysfunction in zebrafish leads to abnormal brain cilia, altered transcription of neuron-associated genes and abnormal swimming behaviour despite normal brain morphology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3