Affiliation:
1. Centre for Research in Neuroscience, Montreal General Hospital Research Institute, and Departments of Neurology and Neurosurgery and of Biology, McGill University, Montreal, Quebec H3G 1A4 Canada
Abstract
As a first step in understanding the development of synaptic activation in the locomotor network of the zebrafish, we examined the properties of spontaneous, glutamatergic miniature excitatory postsynaptic currents (mEPSCs). Whole cell patch-clamp recordings were obtained from visually identified hindbrain reticulospinal neurons and spinal motoneurons of curarized zebrafish 1–5 days postfertilization (larvae hatch after the 2nd day of embryogenesis). In the presence of tetrodotoxin (TTX) and blockers of inhibitory receptors (strychnine and picrotoxin), we detected fast glutamatergic mEPSCs that were blocked by the AMPA/kainate receptor-selective antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). At positive voltages or in the absence of Mg2+, a second, slower component of the mEPSCs was revealed that the N-methyl-d-aspartate (NMDA) receptor-selective antagonistdl−2-amino-5-phosphonovalerate (AP-5) abolished. In the presence of both CNQX and AP-5, all mEPSCs were eliminated. The NMDA component of reticulospinal mEPSCs had a large single-channel conductance estimated to be 48 pS. Larval AMPA/kainate and NMDA components of the mEPSCs decayed with biexponential time courses that changed little during development. At all stages examined, approximately one-half of synapses had only NMDA responses (lacking AMPA/kainate receptors), whereas the remainder of the synapses were composed of a mixture of AMPA/kainate and NMDA receptors. There was an overall increase in the frequency and amplitude of mEPSCs with an NMDA component in reticulospinal (but not motoneurons) during development. These results indicate that glutamate is a prominent excitatory transmitter in the locomotor regions of the developing zebrafish and that it activates either NMDA receptors alone at functionally silent synapses or together with AMPA/kainate receptors.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献