Author:
Sekine Shuichi,Ito Kousei,Horie Toshiharu
Abstract
Oxidative stress is known to be a common feature of cholestatic syndrome. We have described the internalization of multidrug resistance-associated protein 2 (Mrp2), a biliary transporter involved in bile salt-independent bile flow, under acute oxidative stress, and a series of signaling pathways finally leading to the activation of novel protein kinase C were involved in this mechanism; however, it has been unclear whether the internalized Mrp2 localization was relocalized to the canalicular membrane when the intracellular redox status was recovered from oxidative stress. In this study, we demonstrated that decreased canalicular expression of Mrp2 induced by tertiary-butyl hydroperoxide (t-BHP) was recovered to the canalicular membrane by the replenishment of GSH by GSH-ethyl ester, a cell-permeable form of GSH. Moreover, pretreatment of isolated rat hepatocytes with colchicine and PKA inhibitor did not affect the t-BHP-induced Mrp2 internalization process but did prevent the Mrp2 recycling process induced by GSH replenishment. Moreover, intracellular cAMP concentration similarly changed with the change of intracellular GSH content. Taken together, our data clearly indicate that the redox-sensitive balance of PKA/PKC activation regulates the reversible Mrp2 localization in two different pathways, the microtubule-independent internalization pathway and -dependent recycling pathway of Mrp2.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献